remove comments
All checks were successful
Hugo / build (push) Successful in 22s

This commit is contained in:
Brooke 2024-03-14 17:49:53 -04:00
parent 188a6b5b1d
commit e359e56396
2 changed files with 451 additions and 474 deletions

View file

@ -1,8 +1,6 @@
(function () { (function () {
"use strict"; "use strict";
// braille
const enc = (x) => const enc = (x) =>
((x & 0x08) << 3) | ((x & 0x70) >> 1) | (x & 0x87) | 0x2800; ((x & 0x08) << 3) | ((x & 0x70) >> 1) | (x & 0x87) | 0x2800;
const row = (x) => String.fromCharCode(...Array.from(x, enc)); const row = (x) => String.fromCharCode(...Array.from(x, enc));
@ -15,15 +13,11 @@
const render = (table) => table.map(row).join("\n"); const render = (table) => table.map(row).join("\n");
// util
const frame = () => new Promise((resolve) => requestAnimationFrame(resolve)); const frame = () => new Promise((resolve) => requestAnimationFrame(resolve));
const element = (name, options) => const element = (name, options) =>
Object.assign(document.createElement(name), options); Object.assign(document.createElement(name), options);
// bayer
const bayer = (order, x, y) => { const bayer = (order, x, y) => {
let z = 0; let z = 0;
for (let i = order; i--; x >>= 1, y >>= 1) for (let i = order; i--; x >>= 1, y >>= 1)
@ -41,8 +35,6 @@
return (x, y) => lut[(x % size) + (y % size) * size]; return (x, y) => lut[(x % size) + (y % size) * size];
}; };
// render
const simplex = new SimplexNoise(); const simplex = new SimplexNoise();
const bayer4 = lut(4); const bayer4 = lut(4);
@ -67,8 +59,6 @@
return t > bayer4(x, y); return t > bayer4(x, y);
}; };
// main
const main = async () => { const main = async () => {
const fillerSize = 100; const fillerSize = 100;
const filler = const filler =
@ -111,4 +101,3 @@
main(); main();
})(); })();

View file

@ -1,34 +1,5 @@
/* (function () {
* A fast javascript implementation of simplex noise by Jonas Wagner "use strict";
Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
Which is based on example code by Stefan Gustavson (stegu@itn.liu.se).
With Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
Better rank ordering method by Stefan Gustavson in 2012.
Copyright (c) 2018 Jonas Wagner
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
(function() {
'use strict';
var F2 = 0.5 * (Math.sqrt(3.0) - 1.0); var F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
var G2 = (3.0 - Math.sqrt(3.0)) / 6.0; var G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
@ -39,10 +10,9 @@ Better rank ordering method by Stefan Gustavson in 2012.
function SimplexNoise(randomOrSeed) { function SimplexNoise(randomOrSeed) {
var random; var random;
if (typeof randomOrSeed == 'function') { if (typeof randomOrSeed == "function") {
random = randomOrSeed; random = randomOrSeed;
} } else if (randomOrSeed) {
else if (randomOrSeed) {
random = alea(randomOrSeed); random = alea(randomOrSeed);
} else { } else {
random = Math.random; random = Math.random;
@ -54,75 +24,64 @@ Better rank ordering method by Stefan Gustavson in 2012.
this.perm[i] = this.p[i & 255]; this.perm[i] = this.p[i & 255];
this.permMod12[i] = this.perm[i] % 12; this.permMod12[i] = this.perm[i] % 12;
} }
} }
SimplexNoise.prototype = { SimplexNoise.prototype = {
grad3: new Float32Array([1, 1, 0, grad3: new Float32Array([
-1, 1, 0, 1, 1, 0, -1, 1, 0, 1, -1, 0,
1, -1, 0,
-1, -1, 0, -1, -1, 0, 1, 0, 1, -1, 0, 1,
1, 0, 1,
-1, 0, 1,
1, 0, -1, 1, 0, -1, -1, 0, -1, 0, 1, 1,
-1, 0, -1,
0, 1, 1,
0, -1, 1, 0, -1, 1, 0, 1, -1, 0, -1, -1,
0, 1, -1, ]),
0, -1, -1]), grad4: new Float32Array([
grad4: new Float32Array([0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, -1, 1,
0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1,
1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1, 0, -1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1, 1, 1,
-1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, -1, 1, 0, -1,
1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1,
-1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1, -1, 0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0,
1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, ]),
-1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0]), noise2D: function (xin, yin) {
noise2D: function(xin, yin) {
var permMod12 = this.permMod12; var permMod12 = this.permMod12;
var perm = this.perm; var perm = this.perm;
var grad3 = this.grad3; var grad3 = this.grad3;
var n0 = 0; // Noise contributions from the three corners var n0 = 0;
var n1 = 0; var n1 = 0;
var n2 = 0; var n2 = 0;
// Skew the input space to determine which simplex cell we're in
var s = (xin + yin) * F2; // Hairy factor for 2D var s = (xin + yin) * F2;
var i = Math.floor(xin + s); var i = Math.floor(xin + s);
var j = Math.floor(yin + s); var j = Math.floor(yin + s);
var t = (i + j) * G2; var t = (i + j) * G2;
var X0 = i - t; // Unskew the cell origin back to (x,y) space var X0 = i - t;
var Y0 = j - t; var Y0 = j - t;
var x0 = xin - X0; // The x,y distances from the cell origin var x0 = xin - X0;
var y0 = yin - Y0; var y0 = yin - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in. var i1, j1;
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { if (x0 > y0) {
i1 = 1; i1 = 1;
j1 = 0; j1 = 0;
} // lower triangle, XY order: (0,0)->(1,0)->(1,1) } else {
else {
i1 = 0; i1 = 0;
j1 = 1; j1 = 1;
} // upper triangle, YX order: (0,0)->(0,1)->(1,1) }
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where var x1 = x0 - i1 + G2;
// c = (3-sqrt(3))/6
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
var y1 = y0 - j1 + G2; var y1 = y0 - j1 + G2;
var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords var x2 = x0 - 1.0 + 2.0 * G2;
var y2 = y0 - 1.0 + 2.0 * G2; var y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
var ii = i & 255; var ii = i & 255;
var jj = j & 255; var jj = j & 255;
// Calculate the contribution from the three corners
var t0 = 0.5 - x0 * x0 - y0 * y0; var t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 >= 0) { if (t0 >= 0) {
var gi0 = permMod12[ii + perm[jj]] * 3; var gi0 = permMod12[ii + perm[jj]] * 3;
t0 *= t0; t0 *= t0;
n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0); // (x,y) of grad3 used for 2D gradient n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0);
} }
var t1 = 0.5 - x1 * x1 - y1 * y1; var t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 >= 0) { if (t1 >= 0) {
@ -136,32 +95,30 @@ Better rank ordering method by Stefan Gustavson in 2012.
t2 *= t2; t2 *= t2;
n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2); n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2);
} }
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2); return 70.0 * (n0 + n1 + n2);
}, },
// 3D simplex noise
noise3D: function(xin, yin, zin) { noise3D: function (xin, yin, zin) {
var permMod12 = this.permMod12; var permMod12 = this.permMod12;
var perm = this.perm; var perm = this.perm;
var grad3 = this.grad3; var grad3 = this.grad3;
var n0, n1, n2, n3; // Noise contributions from the four corners var n0, n1, n2, n3;
// Skew the input space to determine which simplex cell we're in
var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D var s = (xin + yin + zin) * F3;
var i = Math.floor(xin + s); var i = Math.floor(xin + s);
var j = Math.floor(yin + s); var j = Math.floor(yin + s);
var k = Math.floor(zin + s); var k = Math.floor(zin + s);
var t = (i + j + k) * G3; var t = (i + j + k) * G3;
var X0 = i - t; // Unskew the cell origin back to (x,y,z) space var X0 = i - t;
var Y0 = j - t; var Y0 = j - t;
var Z0 = k - t; var Z0 = k - t;
var x0 = xin - X0; // The x,y,z distances from the cell origin var x0 = xin - X0;
var y0 = yin - Y0; var y0 = yin - Y0;
var z0 = zin - Z0; var z0 = zin - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in. var i1, j1, k1;
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords var i2, j2, k2;
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) { if (x0 >= y0) {
if (y0 >= z0) { if (y0 >= z0) {
i1 = 1; i1 = 1;
@ -170,25 +127,22 @@ Better rank ordering method by Stefan Gustavson in 2012.
i2 = 1; i2 = 1;
j2 = 1; j2 = 1;
k2 = 0; k2 = 0;
} // X Y Z order } else if (x0 >= z0) {
else if (x0 >= z0) {
i1 = 1; i1 = 1;
j1 = 0; j1 = 0;
k1 = 0; k1 = 0;
i2 = 1; i2 = 1;
j2 = 0; j2 = 0;
k2 = 1; k2 = 1;
} // X Z Y order } else {
else {
i1 = 0; i1 = 0;
j1 = 0; j1 = 0;
k1 = 1; k1 = 1;
i2 = 1; i2 = 1;
j2 = 0; j2 = 0;
k2 = 1; k2 = 1;
} // Z X Y order
} }
else { // x0<y0 } else {
if (y0 < z0) { if (y0 < z0) {
i1 = 0; i1 = 0;
j1 = 0; j1 = 0;
@ -196,100 +150,102 @@ Better rank ordering method by Stefan Gustavson in 2012.
i2 = 0; i2 = 0;
j2 = 1; j2 = 1;
k2 = 1; k2 = 1;
} // Z Y X order } else if (x0 < z0) {
else if (x0 < z0) {
i1 = 0; i1 = 0;
j1 = 1; j1 = 1;
k1 = 0; k1 = 0;
i2 = 0; i2 = 0;
j2 = 1; j2 = 1;
k2 = 1; k2 = 1;
} // Y Z X order } else {
else {
i1 = 0; i1 = 0;
j1 = 1; j1 = 1;
k1 = 0; k1 = 0;
i2 = 1; i2 = 1;
j2 = 1; j2 = 1;
k2 = 0; k2 = 0;
} // Y X Z order
} }
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), }
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where var x1 = x0 - i1 + G3;
// c = 1/6.
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
var y1 = y0 - j1 + G3; var y1 = y0 - j1 + G3;
var z1 = z0 - k1 + G3; var z1 = z0 - k1 + G3;
var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords var x2 = x0 - i2 + 2.0 * G3;
var y2 = y0 - j2 + 2.0 * G3; var y2 = y0 - j2 + 2.0 * G3;
var z2 = z0 - k2 + 2.0 * G3; var z2 = z0 - k2 + 2.0 * G3;
var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords var x3 = x0 - 1.0 + 3.0 * G3;
var y3 = y0 - 1.0 + 3.0 * G3; var y3 = y0 - 1.0 + 3.0 * G3;
var z3 = z0 - 1.0 + 3.0 * G3; var z3 = z0 - 1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
var ii = i & 255; var ii = i & 255;
var jj = j & 255; var jj = j & 255;
var kk = k & 255; var kk = k & 255;
// Calculate the contribution from the four corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0) n0 = 0.0; if (t0 < 0) n0 = 0.0;
else { else {
var gi0 = permMod12[ii + perm[jj + perm[kk]]] * 3; var gi0 = permMod12[ii + perm[jj + perm[kk]]] * 3;
t0 *= t0; t0 *= t0;
n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0 + grad3[gi0 + 2] * z0); n0 =
t0 *
t0 *
(grad3[gi0] * x0 + grad3[gi0 + 1] * y0 + grad3[gi0 + 2] * z0);
} }
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0) n1 = 0.0; if (t1 < 0) n1 = 0.0;
else { else {
var gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]] * 3; var gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]] * 3;
t1 *= t1; t1 *= t1;
n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1 + grad3[gi1 + 2] * z1); n1 =
t1 *
t1 *
(grad3[gi1] * x1 + grad3[gi1 + 1] * y1 + grad3[gi1 + 2] * z1);
} }
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0) n2 = 0.0; if (t2 < 0) n2 = 0.0;
else { else {
var gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]] * 3; var gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]] * 3;
t2 *= t2; t2 *= t2;
n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2 + grad3[gi2 + 2] * z2); n2 =
t2 *
t2 *
(grad3[gi2] * x2 + grad3[gi2 + 1] * y2 + grad3[gi2 + 2] * z2);
} }
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0) n3 = 0.0; if (t3 < 0) n3 = 0.0;
else { else {
var gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]] * 3; var gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]] * 3;
t3 *= t3; t3 *= t3;
n3 = t3 * t3 * (grad3[gi3] * x3 + grad3[gi3 + 1] * y3 + grad3[gi3 + 2] * z3); n3 =
t3 *
t3 *
(grad3[gi3] * x3 + grad3[gi3 + 1] * y3 + grad3[gi3 + 2] * z3);
} }
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3); return 32.0 * (n0 + n1 + n2 + n3);
}, },
// 4D simplex noise, better simplex rank ordering method 2012-03-09
noise4D: function(x, y, z, w) { noise4D: function (x, y, z, w) {
var perm = this.perm; var perm = this.perm;
var grad4 = this.grad4; var grad4 = this.grad4;
var n0, n1, n2, n3, n4; // Noise contributions from the five corners var n0, n1, n2, n3, n4;
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
var s = (x + y + z + w) * F4; // Factor for 4D skewing var s = (x + y + z + w) * F4;
var i = Math.floor(x + s); var i = Math.floor(x + s);
var j = Math.floor(y + s); var j = Math.floor(y + s);
var k = Math.floor(z + s); var k = Math.floor(z + s);
var l = Math.floor(w + s); var l = Math.floor(w + s);
var t = (i + j + k + l) * G4; // Factor for 4D unskewing var t = (i + j + k + l) * G4;
var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space var X0 = i - t;
var Y0 = j - t; var Y0 = j - t;
var Z0 = k - t; var Z0 = k - t;
var W0 = l - t; var W0 = l - t;
var x0 = x - X0; // The x,y,z,w distances from the cell origin var x0 = x - X0;
var y0 = y - Y0; var y0 = y - Y0;
var z0 = z - Z0; var z0 = z - Z0;
var w0 = w - W0; var w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
var rankx = 0; var rankx = 0;
var ranky = 0; var ranky = 0;
var rankz = 0; var rankz = 0;
@ -306,89 +262,122 @@ Better rank ordering method by Stefan Gustavson in 2012.
else rankw++; else rankw++;
if (z0 > w0) rankz++; if (z0 > w0) rankz++;
else rankw++; else rankw++;
var i1, j1, k1, l1; // The integer offsets for the second simplex corner var i1, j1, k1, l1;
var i2, j2, k2, l2; // The integer offsets for the third simplex corner var i2, j2, k2, l2;
var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner var i3, j3, k3, l3;
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
i1 = rankx >= 3 ? 1 : 0; i1 = rankx >= 3 ? 1 : 0;
j1 = ranky >= 3 ? 1 : 0; j1 = ranky >= 3 ? 1 : 0;
k1 = rankz >= 3 ? 1 : 0; k1 = rankz >= 3 ? 1 : 0;
l1 = rankw >= 3 ? 1 : 0; l1 = rankw >= 3 ? 1 : 0;
// Rank 2 denotes the second largest coordinate.
i2 = rankx >= 2 ? 1 : 0; i2 = rankx >= 2 ? 1 : 0;
j2 = ranky >= 2 ? 1 : 0; j2 = ranky >= 2 ? 1 : 0;
k2 = rankz >= 2 ? 1 : 0; k2 = rankz >= 2 ? 1 : 0;
l2 = rankw >= 2 ? 1 : 0; l2 = rankw >= 2 ? 1 : 0;
// Rank 1 denotes the second smallest coordinate.
i3 = rankx >= 1 ? 1 : 0; i3 = rankx >= 1 ? 1 : 0;
j3 = ranky >= 1 ? 1 : 0; j3 = ranky >= 1 ? 1 : 0;
k3 = rankz >= 1 ? 1 : 0; k3 = rankz >= 1 ? 1 : 0;
l3 = rankw >= 1 ? 1 : 0; l3 = rankw >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords var x1 = x0 - i1 + G4;
var y1 = y0 - j1 + G4; var y1 = y0 - j1 + G4;
var z1 = z0 - k1 + G4; var z1 = z0 - k1 + G4;
var w1 = w0 - l1 + G4; var w1 = w0 - l1 + G4;
var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords var x2 = x0 - i2 + 2.0 * G4;
var y2 = y0 - j2 + 2.0 * G4; var y2 = y0 - j2 + 2.0 * G4;
var z2 = z0 - k2 + 2.0 * G4; var z2 = z0 - k2 + 2.0 * G4;
var w2 = w0 - l2 + 2.0 * G4; var w2 = w0 - l2 + 2.0 * G4;
var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords var x3 = x0 - i3 + 3.0 * G4;
var y3 = y0 - j3 + 3.0 * G4; var y3 = y0 - j3 + 3.0 * G4;
var z3 = z0 - k3 + 3.0 * G4; var z3 = z0 - k3 + 3.0 * G4;
var w3 = w0 - l3 + 3.0 * G4; var w3 = w0 - l3 + 3.0 * G4;
var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords var x4 = x0 - 1.0 + 4.0 * G4;
var y4 = y0 - 1.0 + 4.0 * G4; var y4 = y0 - 1.0 + 4.0 * G4;
var z4 = z0 - 1.0 + 4.0 * G4; var z4 = z0 - 1.0 + 4.0 * G4;
var w4 = w0 - 1.0 + 4.0 * G4; var w4 = w0 - 1.0 + 4.0 * G4;
// Work out the hashed gradient indices of the five simplex corners
var ii = i & 255; var ii = i & 255;
var jj = j & 255; var jj = j & 255;
var kk = k & 255; var kk = k & 255;
var ll = l & 255; var ll = l & 255;
// Calculate the contribution from the five corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0) n0 = 0.0; if (t0 < 0) n0 = 0.0;
else { else {
var gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32) * 4; var gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32) * 4;
t0 *= t0; t0 *= t0;
n0 = t0 * t0 * (grad4[gi0] * x0 + grad4[gi0 + 1] * y0 + grad4[gi0 + 2] * z0 + grad4[gi0 + 3] * w0); n0 =
t0 *
t0 *
(grad4[gi0] * x0 +
grad4[gi0 + 1] * y0 +
grad4[gi0 + 2] * z0 +
grad4[gi0 + 3] * w0);
} }
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0) n1 = 0.0; if (t1 < 0) n1 = 0.0;
else { else {
var gi1 = (perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32) * 4; var gi1 =
(perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32) *
4;
t1 *= t1; t1 *= t1;
n1 = t1 * t1 * (grad4[gi1] * x1 + grad4[gi1 + 1] * y1 + grad4[gi1 + 2] * z1 + grad4[gi1 + 3] * w1); n1 =
t1 *
t1 *
(grad4[gi1] * x1 +
grad4[gi1 + 1] * y1 +
grad4[gi1 + 2] * z1 +
grad4[gi1 + 3] * w1);
} }
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0) n2 = 0.0; if (t2 < 0) n2 = 0.0;
else { else {
var gi2 = (perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32) * 4; var gi2 =
(perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32) *
4;
t2 *= t2; t2 *= t2;
n2 = t2 * t2 * (grad4[gi2] * x2 + grad4[gi2 + 1] * y2 + grad4[gi2 + 2] * z2 + grad4[gi2 + 3] * w2); n2 =
t2 *
t2 *
(grad4[gi2] * x2 +
grad4[gi2 + 1] * y2 +
grad4[gi2 + 2] * z2 +
grad4[gi2 + 3] * w2);
} }
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0) n3 = 0.0; if (t3 < 0) n3 = 0.0;
else { else {
var gi3 = (perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32) * 4; var gi3 =
(perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32) *
4;
t3 *= t3; t3 *= t3;
n3 = t3 * t3 * (grad4[gi3] * x3 + grad4[gi3 + 1] * y3 + grad4[gi3 + 2] * z3 + grad4[gi3 + 3] * w3); n3 =
t3 *
t3 *
(grad4[gi3] * x3 +
grad4[gi3 + 1] * y3 +
grad4[gi3 + 2] * z3 +
grad4[gi3 + 3] * w3);
} }
var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0) n4 = 0.0; if (t4 < 0) n4 = 0.0;
else { else {
var gi4 = (perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32) * 4; var gi4 =
(perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32) * 4;
t4 *= t4; t4 *= t4;
n4 = t4 * t4 * (grad4[gi4] * x4 + grad4[gi4 + 1] * y4 + grad4[gi4 + 2] * z4 + grad4[gi4 + 3] * w4); n4 =
t4 *
t4 *
(grad4[gi4] * x4 +
grad4[gi4 + 1] * y4 +
grad4[gi4 + 2] * z4 +
grad4[gi4 + 3] * w4);
} }
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4); return 27.0 * (n0 + n1 + n2 + n3 + n4);
} },
}; };
function buildPermutationTable(random) { function buildPermutationTable(random) {
@ -408,16 +397,15 @@ Better rank ordering method by Stefan Gustavson in 2012.
SimplexNoise._buildPermutationTable = buildPermutationTable; SimplexNoise._buildPermutationTable = buildPermutationTable;
function alea() { function alea() {
// Johannes Baagøe <baagoe@baagoe.com>, 2010
var s0 = 0; var s0 = 0;
var s1 = 0; var s1 = 0;
var s2 = 0; var s2 = 0;
var c = 1; var c = 1;
var mash = masher(); var mash = masher();
s0 = mash(' '); s0 = mash(" ");
s1 = mash(' '); s1 = mash(" ");
s2 = mash(' '); s2 = mash(" ");
for (var i = 0; i < arguments.length; i++) { for (var i = 0; i < arguments.length; i++) {
s0 -= mash(arguments[i]); s0 -= mash(arguments[i]);
@ -434,16 +422,16 @@ Better rank ordering method by Stefan Gustavson in 2012.
} }
} }
mash = null; mash = null;
return function() { return function () {
var t = 2091639 * s0 + c * 2.3283064365386963e-10; // 2^-32 var t = 2091639 * s0 + c * 2.3283064365386963e-10;
s0 = s1; s0 = s1;
s1 = s2; s1 = s2;
return s2 = t - (c = t | 0); return (s2 = t - (c = t | 0));
}; };
} }
function masher() { function masher() {
var n = 0xefc8249d; var n = 0xefc8249d;
return function(data) { return function (data) {
data = data.toString(); data = data.toString();
for (var i = 0; i < data.length; i++) { for (var i = 0; i < data.length; i++) {
n += data.charCodeAt(i); n += data.charCodeAt(i);
@ -453,21 +441,21 @@ Better rank ordering method by Stefan Gustavson in 2012.
h *= n; h *= n;
n = h >>> 0; n = h >>> 0;
h -= n; h -= n;
n += h * 0x100000000; // 2^32 n += h * 0x100000000;
} }
return (n >>> 0) * 2.3283064365386963e-10; // 2^-32 return (n >>> 0) * 2.3283064365386963e-10;
}; };
} }
// amd if (typeof define !== "undefined" && define.amd)
if (typeof define !== 'undefined' && define.amd) define(function() {return SimplexNoise;}); define(function () {
// common js return SimplexNoise;
if (typeof exports !== 'undefined') exports.SimplexNoise = SimplexNoise; });
// browser
else if (typeof window !== 'undefined') window.SimplexNoise = SimplexNoise; if (typeof exports !== "undefined") exports.SimplexNoise = SimplexNoise;
// nodejs else if (typeof window !== "undefined") window.SimplexNoise = SimplexNoise;
if (typeof module !== 'undefined') {
if (typeof module !== "undefined") {
module.exports = SimplexNoise; module.exports = SimplexNoise;
} }
})();
})();